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ABSTRACT

A three-dimensional blunt body inverse technique is formulated in terms
of two-component stream functions in the spirit of the Ferri, Vaglio-
Laurin axisymmetric blunt body method. In a similar manner to the
axisymmetric case, transformations are found that reduce the elliptic
asymmetric shocklayer to a transformed space inwhich shock, stream-
lines (or the intersections of stream surfaces), body, and sonic surface
are a priori known, so that numerical analysis procedures are consid-
erably simplified. Provided three equations in the three velocity com-
ponents of the transformed space are numerically solved, then inverse
transformations are given so that the corresponding velocities, pres-
sure, and density at a point in the physical space may be determined.
The class of given shocks considered are portions of prolate ellipsoids
in the physical space.
™
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I. INTRODUCTION

In order to predict the subsonic inviscid flow field region about blunted bodies
without axial symmetry, or axisymmetric or asymmetric bodies at an
angle of attack, a detailed analysis of an improperly set elliptic system of
nonlinear equations must be solved by a stable finite difference scheme.
For axisymmetric bodies (at zero and at small angles of attack) many
problems associated with a straightforward approach to the above problem
have been minimized by transformation to a new space upon whose bound-
aries the boundary conditions are known (Refs. 1 and 2), and where velocity
distributions at the axis and in the neighborhood of the sonic line are

a priori determined and used as boundary data. In addition, the domain of
influence of the sonic line is known a priori, leading to uniqueness of the
computed body for a given analytic shock; further reasons for attempting

an extension of this method for three—dimensio‘nal flows are obvious from

the discussion presented in Ref. 2.

Previous analysis of regions of this type (Ref. 3) by series expansion
methods, with a Clebsch transformation, generally leads to a great deal

of computation, indicating the necessity of an analog to the comparatively
simple and theoretically sound method of Refs. 1 and 2. In most cases of
Ref. 3, two or three terms of the expansion (involving the solution of the
associated ordinary nonlinear coupled systems of equations) were necessary

for shock and sonic line shapes.



At present, numerical methods of the kind necessary to fully understand
error analysis for the type of calculations suggested by the inverse prob-
lem have not been fully developed;l however, the methods of Refs. 4 and 5
suggest approaches for improperly set Laplace or Cauchy-Riemann systems
with regard to round-off error analysis, approximation error, necessary

step size, etc., for the linear problem.

Provided the sonic surface is known (or the elliptic solutioncanbe extended
sufficiently past the sonic surface as is sometimes done), a number of
three-dimensional characteristics methods can be used2 (Refs. 10, 11,

and 12) to continue the solution into the hyperbolic domain.

In accordance with this discussion, then, an inverse method is developed
in the spirit of the Ferri, Vaglio-Laurin method for three-dimensional
flows about nonaxisymmetric zero angle of attack bodies. A transforma-
tion of the region R1 (Fig. 1) to a region R (Fig. 2) is effected, and sub-
sequent development of a suitable stream function pair leads to a system
of three nonlinear equations in the unknown velocity components in ’f{,
which are solvable by the method of Refs. 1 and 2, when extended to three-

dimensional nets. Solutions in the transformed space are then transform-

able into the physical space for the actual flow and resulting streamlines.

ITReflection methods for ellif;tic systems have been used to obtain symmetric
hyperbolic transformed systems for the flow about blunted bodies at a small
angle of attack (Ref. 4). For such systems, stable numerical techniques
and error estimates are to be found (for example Ref. 5 through 9) in con-
trast to the "marching' method for improperly set elliptic equations.

ZMany' additional comments concerning the numerical and theoretical methods
of Ref. 8 are presented in Vol. II of the report (in. preparation).
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In that the axis flow is not completely a priori determined from the
resulting system of equations, it is recornmended that the bounding
surfaces be taken as the shock, sonic surface, and body approximation
surface in the R space for purposes of computation. From a computa-
tional standpoint, round~off errors, say on the initial surface, propagate
exponentially and, therefore, obviate methods of filtering high frequencies
for stable solutions; alternatively, for a high accuracy difference scheme,
only a few steps are necessary across the shock layer so that growth of
round~off error is lessened. For known flow boundaries, the latter
alternative leads to difference equations always satisfying the sonic
surface given boundary condition. From Ref. 2, from the fact that stream
surfaces are a priori known, a lower-order difference scheme is neces-
sary, since the order of the system has been reduced. Although details

of the numerical analysis will not be dealt with in detail here, it is possible
to see that many of the numerical simplifications of Refs. 1 and 2 carry
over to the method to be indicated. Although solutions may be computed
by a variety of methods extended from their axisymmetric counterpart,

the method of Refs. 1 and 2 appears to be singular in the use of known
information on the axis and sonic surface, leading to a more theoretically’
sound and numerically simple method in the extension to a higher

dimension.

For a specified asymmetric portion of the shock surface given over the sub-

sonic and transonic regions (here taken as a portion of a prolate ellipsoid),




the method indicated in this report may be applied to determine the

three-dimensional shock layer in detail and also the body shape.

Knowledge of the aerodynamic characteristics (pressures, velocities,
etc.) in the nose region of a particular "lifting' surface may be deter-
mined by this method, and inputs to a downstream characteristics-
routine established. In this manner, total aerodynamic analysis of fully
three-dimensional lifting bodies may be theoretically performed in order

to obtain design criteria for such bodies.




II. SOME PRELIMINARY CONSIDERATIONS FOR A THREE-
DIMENSIONAL INVISCID BLUNT BODY INVERSE METHOD

The equations governing the steady three-dimensional rotational flow of a

compressible inviscid gas may be written in general vector form as

—

V. pV = (1)
W a3t — 3 LS
p(V - V)V +yp =0 (2)
—_k sk *Y
Vi -Vl /p ")=0 -(3)

where the () denotes dimensional quantities.

For a three-dimensional blunt body inverse technique formulated in terms
of a curvilinear coordinate system, a coordinate surface corresponding to
the shock surface is chosen as a portion of an ellipse of rotation about the
z-axis. This portion is to lie in the half-space x < 0, where the x = 0

plane extends past the sonic point on the shock surface. The free stream
velocity vector \700 is parallel to the x-axis. In, oblate spheroidal coordi-

nates the metrics are

h2 _ cosh2 £ hZ _ ‘(:os2 n
17 2 2 27 2 2 2
(cosh™ £ - cos™ 7) C™(cosh™ £ - cos™ n)
2
hg - cos { (4)

c? cosh® £ cos? n




for

gl = C sinh ¢ §2=sin-q §3=sin§ (4a)

The coordinates gl, §2, §3 are the curvilinear coordinates; values of §,
1, { are essentially parameters constant on families of the gl, 2_5,2, §3

coordinate surfaces, respectively. Nondimensionalization by free-stream

values,
S A __p _e
v_ o v v_ o PT/7 o PEL—
0 © © pmVoo o
} S:::
S R (y - 1) (4b)

is next performed on the system (Eqs. 1 through 3). Note that the metrics
(Eq. 4) are
2 2 2 2
2_ &y tc 2 1-% 2 L-£5

St U O T N (4c)
Poerechy P oefech P (ef+cf)(1-ed)

and the surface £ = const. corresponds to an ellipse of rotation about the
z-axis; the surface n = const. corresponds to a one-sheet hyperbola of
revolution about the z-axis; and { = const. corres;;onds to a plane through
the z-axis (Fig. 1). The constant C corresponds to the origin-to-focus

distance of the coordinate system, or the radius of the £ = 0 disc. 3

const. surfaces; the

3C is the common focus point of the £ = const., n =
= 0.

plane z = 0 minus the £ = 0 disc is the surface q

-6-




For the range 0 < £ < gs (where E_",s is taken to represent a portion of the
prescribed shock in the half-space x <0) 0 <n <w/2, 0 <§ <7m/2, points
(£,m, L) of the prolate-spheroidal coordinate system cover the space of the
three-dimensional shock layer (Rl) lying between §s and B(§,n, L), the
coordinates of a computed body surface. The shock gs and Moo are chosen
such that the focus of gs lies inside of the computed body corresponding to
gs. In this coordinate system (Fig. 1), then, Eqs. (1), (2), and (3) become,

in scalar form

|t
(=]

hoh h h hih
9 2h3 5 1 ha 5 P2\
3t (hlpu h, ) 3L, (thv _Hz—) "aE; (h3pw hs ) )

]
<
-
1]
o
—
o~
e

1 ap

PR S I (M
phy 8E)

h h

u 8v+lav+w 8v+ W<v8h2_wah3)+ u (Vazual)

By o€, B, 3%, ' hy BE;  hyhy |\ 06, 8E, | " B,by 88 " BE,
1 op

+— =0 8

°F; 36 » (8)
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i . .
where v' are the contravariant velocity components.

hee

A point P(F,l, gz, §3) e(Rlﬂ A) is formed by the intersection of the orthogonal
(gl, éz, €3) surfaces; at P, on the plane { = const., unit vectors él’ {3\2 are
tangent locally to the § = const. and n = const. traces on { = const. ,

respectively. The unit vector Q3 lies in the direction of /e\l X {-3\2 (L to the

plane {).

The intersection of £, n lies on a circle (at z = const. ) with the unit tangent
A A A A . . .
vector €;. The €, €,, €3 vectors change direction according to P. The

vectors Vf;l, VE,Z, V§3 are 1l to &1, &,2, §3, respectively; therefore,

/e\3 = h:‘.)V«‘_E,3 . If now d'f3 is tangent to the 5;3‘ circle, ld?3i = dS3 , then
— . A . _ P A _

dr, - €5 3 h3vg3 , or dS3 = h3d£_§,3 . Similarly, €, = hZVF=2 ,
A

e, = hlvgl , or dS2 = h2d§2 ) dS1 = hldgl . The unit vectors are such

A A A A A
eZXe3, X'e

= dS3 = dr

1 andé =é X/e\

A
that €, = 3 1 2 -

1 3

In this coordinate system x = -cosh £ cosn sin{, y = C cosh § cos n cos {,
z = C sinh § sinn; in a plane { = const., the coordinate surfaces £, n are

of the form

ZZ pZ PZ ZZ
+ =1 -—Z% __ =1 (10)
C2 sinh? £ C2 cosh® ¢ 2 2




where p2 = xz ;i-yz, £ =0 corresponds tox =0, and{ =n/2toy=0. In

order to transform the (£,7,t) system (Eqs. 5 through 9) into a coordinate
system (¢, T, m) in which the shock, body, stagnation streamline, and sonic
surface are known in terms of values of the new coordinates in the manner
of Ref. 1 (the method of Ref. 1 pertains to axisymmetric elliptic regions),
stream functions (Refs. 2 and 3) {, ¢ are introduced. Note that the mass
flow rhoo , through a portion An of a surface, A, covered by curvilinear

coordinates, g and B, (with metrics, h and k) is

8.

w {f (99 X 9g) - Tas

(-€3)
= }/\‘f [(h¢aal + quﬁEZ) X (h¢a€l +k¢p'e-2)] . —hk3— dadp
n
=(‘~|J2_¢1)(¢2" ¢’1) (11)

therefore, for a plane -x = const. (‘.!._\700) divided into rectangular '"boxes!'
by z = const. and y = const. planes, poovoo(zn - Zn-l)(yk - yk—l) =

(q;n - Ll,}n_l)(¢k - ¢k-1‘) represents the m in terms of the area of a
particular ""box.' For plane flow (yk - yk-l) =1, (¢k - gbk_l) =1, and

(Eq. 11) becomes rfloo =Yy - 4y) -

Consider next the independent variable transformation

(a si:x T\)= sinhépsin'q ! (‘3 coz L) = cosh ¢ coz ncos { ’

™= ap(—-L)( T ) sinh § (12)

sin n/\cos




or

Q' o = , ' g = ¢ ,
& E%E [ﬁ 1 - gg)llzjl (el - e - e 2

3
- 1at @ T
TT—Q,B E_ZE—;gl (lza)

where a, B, a', B' are constants. Through Eq. (12), the region RlﬁA
transforms to ﬁlﬁx; that this is true will be demonstrated after the
following preliminary remarks leading to a method based on Eq. (12) and

generalizations of the mass flow integral Eq. (11).

For certain of the more elementary methods of the first type, it is neces-
sary that normal derivatives hilau/agl, h'ilav/agl, n]low/ ot , hilap/agl,
and h’ilap/agl (and higher derivatives) to the gs surface be determined
in terms of known tangential derivatives and evaluated from shock data.
In this manner, provided a high accuracy difference scheme is coupled
into the method, data is found on an adjacent £ surface to the shock after
multiplying by a suitable Af value. Repeating the evaluation of the
derivatives, the entire flow field is then determined, provided certain
finite difference conditions on optimum step size, stability, systematic

. . s 4 crs
errors, truncation error, etc., are satisfied. These conditions have

qStraigh‘cforward methods of this type for three-dimensional flow will in-
variably experience numericaldifficulties from growth of round-offerror,
etc., and require progressively more non-central high-order difference
schemes to be used in conjunction with the £ set of derivatives near the
sonic surface, therefore, implying a much increased manipulation of num-
bers (and techniques) with no guarantee of convergenceto sonic line values.

-10-
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only been theoretically determined for the improperly posed Laplace
equation (Refs. 13 and 14); however, it is assumed that the underlying
principle of these more simple cases carries over to the elliptic non-
linear system of equations. A more satisfactory approach is based on
certain transformations (Refs. 1 and 2) initially made on the PDE system
in order to reduce numerical difficulties associated with the above method.
In this method known sonic line boundary conditions are naturally intro-
duced, and, in addition, flow boundaries and streamlines are known in the
transformed system permitting a reduction in the order of the transformed
system. Application of known sonic line boundary conditions (MOo >> 1)
are generally absent from methods of the first type. As both methods
essentially involve marching methods, clearly generalized considerations
of Refs. 13 and 14 are of significance. Other typeé‘ of solutions for three-
dimensional subsonic flows are suggested by Ref. 3, in which systems of
nonlinear ordinary equations for terms of a series expansion for density
and stream function pairs about the flow axis are derived; further con-
siderations to solutions of this nature will not be given in this report,

however.

-11-




For the first method, normal derivatives from Egs. (5) through (9) are

du

where

au
h,0¢,

av

h5E,

up

1/p

-12-
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v/p

-v¥pp~

u

] , (ba-8a)

(9a)

Y-1




0 0 1 0 w/p |
0 0 0 wp-Y w
B=|w 0 0 0 0
0 w 0 0 0
LO 0 w 1/p 0o
[ _ (hh,) L 2 (hh,) L2 mnh,) o 0
KRRy B8, 273 B R, 8%, ' 13 R Bh, 9E, 172
0 0 0 0 0
. ( 8h, 3h2) . ( oh) 8h3)
0 — (u -v usr— - W 0 0
- iRy \'88; © 9%,/ Bhy \"3E; 7 T 3E
L (v 3h2 -u ahl) 0 1 (v 3h2 - w 3h3) 0 0
RR, \" 38 T T8, hohs \ 983 3,
1 ( 8h3 ahl) 1 ( ah3 sh )
W - W - V== 0 0 0
v ) s e, e, |

and boundary conditions on the prescribed és = const. shock are, for a

perfect gas at constant ¥, at a point P(gs, n, §), for V= Z ’e\nhnfn
< ;

. . 2 ‘
1Y cos 7 sin { sinh E,s (Y - l)Moo,N + 2
b eg s T \I7Z 2 (10a)
1 hl(smh £ + sin n) (v + I)MOO’ N
w -
R T
' ‘ 3 3
in n sin { cosh (y + 1)M%
fZ_Vs _ sin n sin { cos gs 1 ) - Y 0, N
“h, T ..2 .2 \I/2 b, s 2
2 (51nh §s + sin 'q‘) 2 (v - I)Moo, N T2
(13a-14a)

-13-



2 ‘ . . . .
where Moo, N = Mio [cos2 7 sm2 ¢ sinh® gs/(smh2 gs + sm2 n)l and the

corresponding entropy is

1 -y
2 aA—r
V1| (v+1)M 3|
- 2Y 2 o, N |Y
S, - S, = log [1 + o (Moo, N- 1)] e (13)
Y o, N
while on the body, b, S=3S5 ]max. = const. (13a)
dgl(COShz £ - cos” “)1/2 di:,z(Cosh2 £ - cos? “)1/2
.
u cosh § v cos
b b
d§3 cosh £ cos q
- C (14)

w cos

Suppose now that Egs. (5)through (9) are subject to independent variable
transformations (Eq. 12) by means of two-component stream functions,
but not put into Egs. (5a) through (9a) form, as the calculation scheme
proposed does not require this form. Then conditions on the sonic surface

may be determined by characteristics methods so that RMNA conditions are

known on a closed boundary.

In that curvilinear coordinates are used throughout, differentiations with
respect to coordinates are best done expressing vectors in their contra-

3
variant form (e.g., V = Zl énhnf ™ where £" are components of a
n=

-14-




contravariant vector); this provides a systematic formalism for the

effects of differentiation of the ''unit vectors. "

the velocity,

5
%

af " + fm{

RN

%

In general, then, for

njzﬂ (14b)

or the components of the contravariant vector which correspond to the

der1vat1ve of the ordinary vector with respect to g are

'fl
J

3 }: S ij}. The symbol {_

j} denotes the Christoffel

symbol of the second kind, generally formed from those of the first kind

from {i

is the contravariant tensor g =

element gij in lgij l

covariant law, then (for scalars),

| @
—_
Lol (Y

ﬁ1°’
b
N

(w5
—
W |~

where the column vectors of J represent covariant vectors.

kj} = gka[ij, a], where [ij, k] :%(

Gij/fgij

8k

O 98y

ox’

J) and ko
— - , g
axt 8xk

|, GlJ is the cofactor of the

Provided transformations are next taken with the

with Egq. (12a),

[ dg oT 311'.ﬂ ’3( )

B-?l agl aél d¢
80— 81’ aTT A 3( )

5, BE, BE, || o7 (15)
80‘ ’3T om 8( )

Bg3 8&’:-,3 8§3 am

In terms of

these quantities, then, the derivatives of the boundary conditions

(Eqs. 10a through 14a, and 13) may be expressed in terms of the

Christoffel symbols, using Egs. (4a), (4c), and (14b).

-15-



At the sonic surface,

1 ,y-1
2T
_1-Y oo
o) =p'  —33T— (16)
V(=)
holds. Also, from Eq.(12a) at the shock
| % (ez i;)( 67,0 )
f - 2Y 2 s S Kl KZ(C +gls)(€ls-¢ /Kl)
(L'J1¢)—'< 1 - 1 M g
Y [o'e) " >
1.+ C _\1’_2
! K. |
B T-{
2 (gz qﬁ)(l IS )
ST C i) | e R VI R
T Ky(C* + e )T, - v2/Ky)
z+(Y-1)MOO - o
(], + Cu®/K])
X 2 el ¢ i
Lt ) o)
) s
(v + )M> 1 KZ(C ;Zgls)(gls ok /Kl)
oo . -
(1. +55)
e 1 i

(17)

The constants Kl’ K2 are defined at the shock by Egs. (18)and (19); at the

shock front in either coordinate system, (o, T, T) OT (gl, gz, §3), f is known

from Eq.(12a) and the related inverse relations.

The relation Eq.(17)

holds throughout (lex\) and, when used numerically with Eq.(16), yields

a method whereby the sonic surface may be computed (Refs. 1 and 3).

-16=-



To describe the transformation (Eq. 12), consider the quantity |e| as a
small positive constant, ]e ] << 1. The quantities a, B, a', B' are also
small constants, or scale factors, on 1, v (Eq. 12 and 122). By con-
struction of a suitable approximation surface (to be described later in this
section) through the neighborhood of z = 0, y = 0 on the -x = const. plane
(stagnation point), and on the stagnation streamline though this point to
the gls = const. shock, { and ¢ are of the order of |e IZ on this surface.
On the body surface, where = 0 and ¢ = 0 simultaneously, the |, ¢ are
of the order of l]e l on the approximation surface Q in the neighborhood of
any point on the body surface. Away from these regions, ¢ >> le l,

¢ >> Ie I and may be considered simply as {;, ¢ respectively. On the
shock, from Eq.(12), assume (a7/sinm) = const., (Bc/cos ) = const.
so that in terms of (¢, 7, T) coordinates, m = (const. ) sinh £. Then, as
gl = gl = const., the prescribed three-dimensional shock in oblate-
spheroisdal coordinates transforms to m = (const. ) in the new system
(Fig. 2). AsO<n <m/2, 0 < t<const.; 0 <l <7m/2, 0 < ¢ <const.,
outside £2. On gs‘, coordinates ({,n) determine a point; corresponding
to this point is (7,¢) on 7 = (const. ). For a locally nonvanishing Jacobian,
then, a portion of the shock A(gs, 1, ) may be mapped into a region

A'(m, o, T) in the new coordinate system. Provided next the box-like
regions (see Eq. 1l for simplified discussion) on the -x = const. plane

are projected onto the gs = const. shock (Fig. 1), then on the shock surface
g~ sinh £ sinn ~z (18)

¢p~coshf cosncosl~y (19)

-17-




Lpn %n ¢k Yk
or/:b ds ~.[z dz and f de¢ ~[ dy for regions away from the
n-1 n-1 Pi-1 k-1
Q2 trace on gs. The projected box-like regions do not, in general, conform
to the curvilinear n, { system on the shock surface, gs. Immediately
downstream of the E’s shock, relations Eqs.(18) and(19) are no longer
valid. For a streamline of the flow field (which lies along the inter-
section of §y = const., ¢ = const. surfaces on a common value entropy
(S/R) line imbedded in both surfaces), the conditions become ) = const.,

¢ = const. on a general streamline, or, from Eq.(12),

_ const. _ const. (20)

aT = Sinh € ’ Bo = ZGsh £ cos n
and in the neighborhood of the body

_ lel/2 3 /2
T-%%e ’ 56'%%@ (21)

as O(y) ~ Of le l); O(p) ~ Of |e l), near the part of Q over the body. 5

In that the stagnation streamline and body stream surface have an entropy
(S/R)S, it is necessary that a suitable representation be found for com-
binations of the new coordinates to represent the adjoining stagnation
streamline and body as a surface with similar properties; to facilitate this
. — . : . 2
representation, a surface consisting of a tubular region of radius |e |

surrounding the stagnation streamline joining a surface that envelopes

5Note that the regions of Q are chosen such that the 'i [ inequalities are
satisfied for a definite, given |e | value.
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the body (within !e | of the body) is assurmed o represent the (S/R)s
surface. In this manner a continuous approximate surface5 is con-
structed that lies arbitrarily close to the actual stagnation streamline
and body surface, by suitable choice of an le | value. In the limit as
!e } - 0, the actual stagnation streamline and body surface are exactly
approached. Now in the region of the stagnation streamline,

O!cos g! ~ On) ~ O(Ie !), 0 <t < gs (as the focus of the coordinate
system is assumed to be within the body) so that in the limit le¢l — 0,

7 -0, ¢> 0, and 7 appears of the order of magnitude qfmax/| sinh £ ]
g - gs l <?b
in the region of the stagnation streamline just behind the shock (6 is a

small positive constant). This, then, in (¢, 7, ) coordinates, appears
to be the m axis, m < (const. )T’xax I SiTh £]. In the vicinity of the body
£-&,| <5

surface, £ >0, 7/2>n >0, m/2 < { <0, away from the tubular region and

near 2. The transformation system near £ is then,

(—S%T]) sinh § sinn = |e| (22)
(E;&g) cosh £ cosn cos t = |e| (23)
7= (%)(C—(%) sinh £ (24)

Suppose that le lz is negligible with respect to |e| and |e | is taken to be
a small positive constant in the neighborhood of the body. From
Egs. (22), (23), and(24), then,O(ar/sinn)~ O(|e|/m), O( o/cos {)~

O(‘e '/n), where n, m may be chosen >1 for large £, B and for conditions
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sufficiently far from the stagnation point region. Then

O(r) ~ Of( | ¢ |2/mn) sinh £]. On the approximate surface, then, for
conditions applicable near the forward part of the stagnation streamline,
part of the m axis is reproduced; further, for conditions on the body
surface sufficiently far from the intersection point (n >0, £ >0, £ large)
the m surface becomes asymptotically close to the m = 0 plane. The
region of Q in the vicinity of the stagnation point, or the juncture of the two
approximate surfaces is yet to be examined. Initially, consider the z, y
planes tangent to the outside of the Ie [2 tube and those that describe a
square within the tube on the plane -x = const.; the s, ¢ planes lying
between these surfaces (in this approximation) then generate an infinity

of (y, ¢) pairs such that any , ¢ pair in this region forms streamlines
lying both on the le |2 tube and the approximation stream surface within

!e | of the body surface while still imbedded in @. On the approximation
body surface, then, for a |e I # 0, specifying a point (£, 1, {) leads to a
point (o, v, T ® 0) in the new coordinates for regions sufficiently far from
the stagnation point. In the region near the stagnation point on {, suppose
that O(£) ~ O(le|), then® O(m)~ O(ap|e|). Here it is assumed that in this
region the O(sin 07) ~ O(|e|), O(cos 7/27) ~ O(|e|). The value of

sinh £ for £ >> 1 is effectively of the order of 1/2 eg‘; for £ small, then,

_ O(sinh £) ~O(~1/2 e_g), (g > 0). For (ar/sinm) and (Ba/cos {) of the

6Here it is assumed that the coordinate point (0, £, §3) lies in the region
of the stagnation point; note also that the stagnation point lies interior
to { in the neighborhood of that point.
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order of ]e | #0 form >0, { <m/2 on the body (Fig. 1), then

O(m) ~ O [e |2). The constants q, 8 may be suitably chosen according to
the degree of magnification of the ¢, T, 7 coordinates desired for a
particular problem. 7 For y, ¢ increasing, then, the value of 7 is >0,
consistent with the streamlines passing between the shock and body in the
(¢, 7, ™) space. These streamlines originate at intersections of {$ = const.,
¢ = const. surfaces on an x < 0 plane, or equivalently, the mappings of

these intersection points onto the m = const. plane in the (¢, T, T) space.

For § large, then, sinh £ is effectively larger; therefore, the scale of
the m coordinate is exaggerated. The surface corresponding to £ = 0 is
the surface of disc r = C; by requiring the stagnation point to be close to
the focus of the coordinate system, then, the three parts of the approxi-
mation surfaces satisfy the properties previously designated. In this
manner, the forward part of the stagnation streamline just past the shock
transforms into part of the wm-axis; the part of the stagnation streamline
closer to the stagnation point lies on a surface O(m) ~ O( ¢ |), and the
surface covering the body within Ie | possesses the property that

Ofm) ~ O( |e l). In the quadrant of the (¢, T, ™) space into which the
quadrant of the physical (§,m, £) shock layer space has been mapped, this
surface is then of the general nature of a hyperbola of revolution with the

m, & and T axes as asymptotes. Note that from Eqgs. (16}and(17), and the

7Obviously the magnitudes of these constants are determined from geo-
metrical considerations based on the chosen és shock, Moo, C, etc.
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results of Section IV, the sonic surface may be constructed; the closed
region ﬁlﬁxtherefore consists of the given shock, known sonic surface,
and Qin (¢, T, 7) space (Fig. 2). From Section IV it is also possible to
construct stream surfaces, a priori, through this region. Note, also,
that for transformation of vector quantities, Eq.. (14b) must necessarily
modify the form of Eq.(15) due to the presence of contributions from the
differentiated unit vectors. This, then, roughly describes the bounding
surfaces of the physical shock layer in terms of surfaces of the (g, T, 7)
space, provided certain assumptions are made concerning approximation
surfaces to the actual (S‘/R)s surfaces. The Jacobian of the transformation

(for scalars) is

oT o ar | 2
=J ; o,7,meC (25)
am ow am

and J and the inverse j = J_l are to be values bounded away from 0, oo in
the region bounded by the shock, sonic surface, and the continuous surface
enveloping the stagnation streamline and body, in order to guarantee a
continuous one-to-one mapping of points in one space to the other. This
condition may require adjustment of the arbitrary constant values intro-

duced throughout this Section.
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III. THREE-DIMENSIONAL STREAM FUNCTIONS
OF CLEBSCH AND MORE GENERAL TYPES

For the inviscid three-dimensional rotational flow of a compressible gas
in a oblate spheroidal coordinate system, the streamline equations are

obtained as integral curves of the energy equation

cosh §

u

al<

)1/2 azl (;,p?) ' = )1/2 azz (p%)

(coshzg - coszn (coshzg - cos ' n

w cos { 2 _(p\_
* T Cosh € cosn 8E; (pY) =0 (26)
as
1/2 1/2
dgl(coshzg - coszn) dgz(coshzg - coszn)
- =C
u cosh £ v cos 1

: d§3 cosh § cos 7
=C

w cos { (27)

The general integral of Eq. (26) is of the form p/pY = flWE, M, &, u, v, w),
(&, m, L,u, v, w)] where fis determinedg from initial values of p/pY on the

streamline intersection of y = const., ¢ = const. surfaces with a shock,

8See Eq. (17).
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here taken as a portion of the coordinate surface £ = const. for x< 0. In

that both y and ¢ satisfy Eq. (26) individually, it follows that

cosh £ cos 1

) (cosn®t - coszn)lﬁ%l +V Ccosn® - coszn)lﬁ%z
+E o teests, = O (28)
and 1
et e

(coshzg - coszn) C(coshzg - cos n)

cos {

w .
tT cosh £ cos n¢§3 =0 (29)

Solutions u, v, w of Eqs. (28) and (29) are determined to within a propor-
tionality factor: by requiring these values to satisfy the equation of

continuity

> -1 -1/2
a—g— [pp(%%izl_é_> (cosh?‘é - cos2 n )
1

-1 -1/2
+ —a-gzl:pv(%g-:—g) (cosh2§ - coszn) :I

L0 | c:coshz.‘; - coszn -1 0 30
8§3 pw cosh £ cos 7 - (30)
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it follows that u,v,w are de'cermined9 in terms of the {, ¢ stream

function pair as

1 cos { 1 /2 -1(
= = i - (31 )
. P C2 cosh £ (coshzg - coszn> jl ¢§2¢g3 ¢§3¢§2) *

1/27°?
1| _cost ( 1 ) _ 31b
v P [ cos n coshzg _ Cos‘zn; j' (4’g1¢€3 4’&3955 l) ( )

‘ -1
11 cos n cosh £
= = B - (31c)
v \:p C(coshzg - coszn)] ( §1¢§2 ¢62¢€1) ©

which are the components of V = 1/p(VyxVe¢). In order to transform the
basic quasi-linear first-order system (Section I) into another first-order
system by means of dependent variable transformations based on Eq. (31),

it is necessary that inverse relations of the form

= (&, ’ y 4, Vv, :P) 4 ‘P =q) (g’g ’g’ LA ) ’
Ve, TV Br oty uvw g, ~ ¥, frfa by mvwe

= (gyg ,g, 2 V) :P) ’ :¢ (g’g ’g’ LA ) 4
4;&3 ¢€3 1'62° 53 WLV, W ¢§1 51 1752: 63 LV, W, p

¢§2 ='¢g2(g11g2’§3; u, v,w, P) ’ ¢€3 = ¢g3(§1’62:€3» u, v, WsP) ,

9AIternatively, Vo =V¢x(-p/|V¢|‘2)V; note that if § is given, then

_ /' (YyxpV) - dx
*=) TV
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are known., Clearly the system (Eq. 31) is not sufficient for this purpose
as implicit function theory yields only relations (for example) of the form
\pg cos naxpg /8{pu) - C¢g cosh gang /8(pv) = 0, which lead to general

2 3 1 3
integrals only reasserting conditions Eqgs. (28) and (29). Additional
assumptions are, therefore, necessary for determination of suitable
inverse relations from Eqgs. (31a), (31b), and (31lc), provided this system

is to be used to reduce Eqs. (5) through (9).

Transformations of the type V = 1/p(V{xV¢) are Clebsch transformations.

An alternative type is

9
puh,h, = a—g"‘—z (32)
. _ ([ 5
pvh b, = (a—épj +a—g%) (33)
_ 0 )
pwh h, = 5—% (34)

where the metrics are as given in Eq. (4c). Provided pV = curl A then

the existence of real Y, ¢ surfaces in(RMA) becomes the problem of deter-

10

mining real values =~ for

10 =
For aVxB =V{xve, B.2h, = yp,. - ¢b. , B,2h, =Yg, - @, ,
171 £ g, 272 £, £,

B,2h, = L]J(Pg' - (PLIJg , illustrating the difficulty associated with a form
3 3
corresponding to Eqs. (35) and (36) for this transformation. The forms

Eqgs. (35) and (36) are nonunique, however, as Ai terms are determinable
to within an arbitrary gradient.
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4 =h,A, - % (h,A,) d¢, (35)

£ 65 56 (R,NA)
p=-b A+ %(hZAZ) at, (36)

For the §, ¢ stream functions of Egs. (32) through (34) to satisfy Eq., (26)

individually, as (Eqs. 28 and 29), then

hyde o hpbe o hady
i} L. 2=F 3=mé (37a,b, c)
1% Pafe, i,

1

from Eqs. (32) through (34). This follows from the requirement that a

point on a streamline is imbedded on both ¢ and { surfaces.

On the Y = const. sheet and the ¢ = const. sheet, respectively, additional

relations follow from

-1 -1 | -1 )
h] Lpgldglhl #hy 4y dEghy + b3ty déshy = 0 (38)
nile, dt h. +hile. de b, +hile, dE h, = 0 (39)
1 % G81M T Ry 0 A8pMp * Ry 0 dEshy
So that with Eqgs. (28) and (29),
h by 2 2
1’3 % _h.dt,vh k% + h,dE,wh,h
1 “hydfgvhyhy + hpdiowhihy )
7 = . 12 h b} (40)
£, h,dg vhoh, - h,dt,uh h,
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-1
h h] 2 2
2'3 Y6, -hjdf whyhy + hydubth, )

= h,h (41)
y 2 2 273
§3 h)dg,vhyhy - hydgyh)hy
hohile 2 2
173 7¢ -h,d¢ vh. h_ + h df_wh. h
1 _ 737237172 272277173 -1
3 = ‘ > 73 h1h3 (42)
§3 hldglvhzh3 - hzdgzuhlh3
hhlg 2 2
273 Tg ~-h.d& . wh,h + h,d§ h h u
2 _ 12177273 37237172 -1
% = z 2 h,hy (43)
§3 hldg 1vhzh3 - hzdg2h1h3u
on these constant valued surfaces. Also, for orthogonality of §, ¢
surfaces,
+ + =0 (44)
, 2 h2 hZ
i 2 3

which generally is satisfied only in the free stream and on the shock, but
is probably too restrictive in R1 and, therefore, will not be assumed

(Fig. 1). Then it follows that in RI’ outside of Q,

28



— = ~ -
(u.h3)(pwh1 zg (puh2h3)gl (wh )
Ye | | (R, Newh R, )éz (paki hs); | ﬁ"“h 3(-1)
¢g2 puh2h3
(I:Lh3)(pwh1h2)€3 - (puh2 3 §3 (wh )
Ve, | (uh3)(pwh1h2)§2 ~{wh | Xpuh,h, ‘iz puh,h
= (45)
(uh3)(pWh1 2 gl (Puhz 3 gl(Whl)
%t (ahNowh Byly = (pabiphsly T PR R
qbgz pwhlh2
(uh3)(pwh1h2)g1 +(p uh2h3 gl (wh )
Pe. | "Pvhy Ry Pubohs Tun; Rowh Byl = Tpubhyle (wh)
L. - L —

At the shock, these relations are explicitly given for the ¢, ¢ derivative

column vectors.

Note that in Ref. 1, the expression Eq. (37) for the axisymmetric case is
unnecessary, as Lpqux&/R - \perXﬁ/R = 0; for the three-dimensional case,

however, Eq. (37) is an additional relation that must be satisfied.

Note that in Eq. (45) the evaluation of derivatives is to be accomplished
by expressing the velocities in their contravariant form, then operating
with Eq. (14a), in part, for the complete derivative. This process has

been incorporated into Eq. (45).
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Note on the inverse relations:

The expressions in Eq. (45) contain certain derivative terms. Now

(1), 1), (D) g1 1) 1),

consider n sets of values given a priori u

u(Z),v(z),w(Z), §(12), g(zz);lggz), etc., in Eq. (45) with metrics known and

derivatives approximated by some discrete approximate expression

involving (1), ..., (n) quantities and the appropriate metrics. Then values

A (2) (n)

, s e e, T ‘may be calculated for the first set of values, respec-

(1) ) ()

tively, and also o' "/, ..., . ,-T(n).

In terms of these quantities,

the partials may be represented accurately, locally, in the vicinity of a
particular set of values by this ''finite difference' type approach. In a
certain small region, then, derivatives have a certain '""best approxi-

mation,' as a number of points have been used for their determination.

Now for two particular sets of values, (j), (j+1), with the best derivative

approximation, a box bounded by planes TT(J) = const. , TT(J+1) = const. ,

A4 RESY RO

= const. , in R exists. In the open region

N (for which these planes are the closure)}, then, the u(k), v(k), w(k) eN

= const. ,

are to be considered as parameters for the inversion of Eqgs. (62)
through (65) for a particular set of u(t), v(t), w(t) values 15 tS n. If

next u(t), v(t), w(t)

are varied and the process repeated, then the
dependence upon the parameters can be ascertained by the variances in
surface shape, average values within the box, etc. With this information

the inverse relations suggested later can be performed numerically with

respect to the u,v,w, p, parameters. See also Eqs. (62 through 65).
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Consider the special case of plane flow in rectangular coordinates at

constant density (w=0, w_=0, p=1, h hz, h3 =1, ¢,2 = 0), then

z 1’

[— = — )
b, -v
by u
v, 0| -

= ‘ (46)

Py 0
¢y 0
] L

Note also that for p = 1, hi = 1, the irrotationality conditions for the

stream function pair are of the form V2¢ = 0; v24: = 0 with b = lbz.

With these relations, transformation from the curvilinear (gl, §2, §3)
space to o, T, T coordinates by means of Eq. (15) is now possible. Now

the metrics of the two systems are related by

2 2.,2 . 2.,.2 . .2.,2 dr
ds” = h{dg] + h3dE; + hydEs =

+

2 ) 2 2 ) 2
e e &) @ )

- ideZ + 'Egdaz + Egdnz (48)
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and for orthogonality of the two coordinate systems,

86,95, 9685, 35305,
90 d7T 9o o7 9c OT

=0 (49)

984 8¢, N 8¢, 8¢, . 865 865 o (50)
8¢ Omw o0 Om 00 Omw

9, 06y 06,08, 965085 51
8t Oom 9t Oom 3t om

and

o0 00 9t Ot o omw

+ —_=— = 4
b€, BE; ' BE, BE ' BE, DE, (492)
90 dc ot or aT om
+ + e =0 5
8, BE, ' 8%, of, = BE, BE, (502)

90 00 ot Ot am 8T
agl ag3

1
o

{51a)

The elements of the J matrix (Egs. 15 and 25) then become, with Egs.

(45) and (124),

-1
o T P

88 (c?+ £7) [(1 - e2)(c? + )

pwhlh2

172
]

(sl Mpwhy o)y + (pubyhg)e (wh)

" Tk ok BTy~ (pub BTy (by) (52)
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5c 962 N F3'-1"""hlhz
9E, [y _ £2 172
2 (1-¢2) [(c?+£3) - 2)]
- 27 7z
) 172
3 2. .2 2
[(c? + 2)(r - ¢2)]
. = = (uh3)(pwh1h2)§1 + (puh2h3)§1(whl)
pv - pu
173 273 (Uh3)(pWh1h2)§2 -1puh2h3)€z(whl)
o 1 = (uh3)(pwh1h2)€1+ (puh2h3)g1(wh1)
9, CE| T puh,h, (uh3)(pwhlh2)g2 . (puh2h37§2(whl)

puh_h —
273 (Eh3)(pwh1h2)g2 (whl)(puhzh

|
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(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)



in which coupling exists between the (gl, gz, §3‘) and (o, T, ) systems.
Note that the order of the system has been preserved as Eq. (45) is
known, and the Eqs. (52) through (60) are J, ¢ independent. Now the
space R (locally Euclidean) formed by gl, §2,~-§3 is to map (locally) onto
the totally Euclidean space R (o, 7, m) in Fig. 2. For the totally

Euclidea.nll space of (o, T, 7), it is assumed

~2 .-l ~2 -1
hl—K1 = const. > 0 , hZ-K2 = const. > 0

- K.} = const. > 0 (61)

h 3

w i

so that all components of the curvature tensor are zero throughout R.

Then, from Eqgs. (48) and (52) through (60),

(uh3 )(pwhlhz)g1 + (puh2h3)§1(wh1)

o= a'-l(pu.h2 (-1)

h3) (uh3)(pWh1h2)§2 - (puh2h3)g2(whl)

.2 -2 2
+ Klgl -a (puh2h3)'

2 1/2

| R eeE

(62)

lhz)gz = (Whl)(PUh2h3 )gz

llAll the Christoffel symbols vanish for constant metrics,
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here K1 is chosen such that

(uhy)Mpwh hy), - (puyhy), (why)1*
K .a?> g-lpuhh 1+ 3 3
1 1 273 (uhgﬂpwhlhgygz - (whl)(puh2h3)gz ’

throughout R, and (arbitrarily), 2 O in the mapped octant. The

constants here also are to be such that Eq. (25) conditions are met.

Similarly,
p"lpuh2h3 £, (“hs)(""’h1hz)gl +(puh2h3)§l(wh1) E,
= - + .
[(1 ] gg)(cz R 6?)‘]1/2 1- gg. (uh‘3)(pwhlh2‘)§z - (Puh2h3)§z(whl) cl 4 el ;2
-1 -1

e 5 £ £

X 5 + > + 5 + >
(c®+ed) (1-¢€3) (c®+e?) (1-¢d)

2 1/2

‘ B"Z(puh2h3)2 [ £, (uhs)(pwhlhz)gl+(puh2h3)§l(wh1) )

X + -
(G 600 - €2) (- €2 " imgwmyit < ooyl (o) 2 e-";-} (63

where

2
gi ’5; :, ﬁ'-Z(PUh2h3)2 [(“hs)("‘”hlhz)gl +(puh2h3)g 1(whl) :I
2 ( i

Q = +
[(a C T 2T - | TR T

-2 2
p (Puh2h3)

. - K
(C®+edl-¢3) *

o2 (b Npwhyhy)y + (pubh)y (wh) ¢
+ ' pvh h, ~ puh,h -
v ehh e v T PR | RN B (Y (64)
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Again, K2 is chosen such that ¢ is real in ﬁ, and ¢ 2 0 in the transformed
octant, representing the physical octant in R. In the same manner as the

above, with (5la)

K
a 1 .1 1 2( 87 __orT __8T -1
ol @) e e s )

K -1/2

2( da do 90, 2 -1 ,

+ =2 + +20 ¢ 2)IK (65)

o glagl gzagz §38§3 2o ):I

where the above partials are to be evaluated from Eqs. (62) through (64),
and (52) through (57) expressions. For values of u,v,w, then

T=rE,. 6,830, vaw), o =0, 65,8550, v, w) and w = w(E L, €, E55u, v, W)
provided, for fixed u,v, w at a point, J £ 0, j # 0 and O’,T,TI'GCZ, and o, T, T
are well defined for all gl, gz, §3‘€R1, then an inverse exists for fixed
w,v,w, i.e., § =& (o, 7, mu,v,w), §, = £,(0, 7, mu, v, w), and

§3 = §3(cr, T, mu,v,w). This procedure was suggested earlier in Section
III; note also that p may be included in the same category as u,v,w, in

this inversion.

The constants Kl’ KZ’K3 change scale sufficiently in the (o, 7, 7) system
such that real values of these coordinates are defined for real values of
&1, éZ’ g'3 coordinates. The complexity of the suggested inverse relations

clearly suggests numerical treatment. Here, 7> 0, and K3 is chosen so
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that v is always real. From Eq. (12A), in terms of‘(gl,‘gz, g3)

coordinates,

(uh3 )(pwhlhz)g . + (puh2h3)€ 1(whl)

g o= §1(Puh2h3) (uh3)(PWh1h2‘)g2 - (puh2h3T§;wh1) (-1)

"
"(uh., {pwh.h - {puh,h h
R P 2l (ub, Xpwh 2)§3 (puh, 3)gs(w D
a'f) [Ky6) - o “(puhyhy (uh3)(pwh1h2)g2 -(WMIXputh;EZ | (66)
and
-1
2
£ 3
Yl el "
‘(C + gl) (1 - §2)
gz (uh3)(pwh1h2)gl + (puh2h3)§1(wh1) _gl ‘
h, h
punyfis 1. &g ﬁh3)(pwh1h2‘)g2 - (puh2h3)g2(wh1) c2 . g?
2
. )2 52 (uh3)(pWhlh2)§1 + (puh2h3)£l(whl) gl
{(p 3 - ~ 7
Ulafag i &2 (uh3)(pwh1h2)§2 Tpuh2h3)§2(whl7 cZ . g? |

/
S R T (67)
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which is of the indicated form of Egs. (35) and (36) (the Al’ AZ’A3
functions have gl, §2, §3, u,v,w as arguments), therefore, providing a

means of construction of the ¢, ¢ surfaces.
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IV. THE TRANSFORMED SPACE AND THE
RESULTING SYSTEM OF EQUATIONS

In the prior section, the inverse relations necessary for Eqs. (5) through
(9) tobe written entirely in terms of (o, 7, 7) coordinates involved an
approximate inversion of Eqs. (62) through (65) \with u, v, w, p, held fixed.
The transformed system is, therefore, determined to within as close an
approximation as desired in a neighborhood of a point in {&, 7, 7) coordi-
nates mapped from (§1, §2, &3) coordinates byEq. (12) or(12a). For a
numerical marching procedure involving finite difference methods, on the
basis of the transformed equations, the additional calculational error due
to systematic errors for the approximately determined functions in small
regions may be made to possess a small effect in total error by suitable

adjustment of mesh size, etc., in the finite difference approach.

At a point in R) at which velocities U, v, W exist, then it follows that, with

h, =h1(tr‘, T, Tu,v,w,p), h,=h,(o, T, m u,v,w,p), hy= hofo, T, mu,v,w,p),

(Uh3)(PWh1hZ)€l + (Puh2h3)§1(Whl):

l_l
e h,h
vl ¢ puhyhy (uh3)(pwh1h2)€2 - (PUh2h3)§2(Wh1)

U b ~ | (uh,)(pwh . h,) - (puh,h,), (wh.)
R a hlvpuhzh3 ) h, wa puh2h3 3 172 §3 273 §3‘ 1 (68)
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. B ot -p "'pub,h, (“hs)("‘"hlhz)él +(pubyhgle (Why)
V = —g +
B, lcz v g2 [(1 ] gg)(cz . 5?)]1/2 (uh3)(pwh1hz)§2 - (puh2h3)§2(whl)
h 2 172 1/2
2 |(1-¢ 2
( z) [(C +§)1-€] [(c +§)(-§2)l
(uh,)(pwh, 2)§1 + (puh2h3)€ (wh,)
x{pvh h, - puh2 3 T lowh z)gz ~enn )g ) (69)
f\l';. um ?1 vT
~ 3 (1 1 or 130') 3 ( 1 1 ot 180-)
W = —+ = + = + - = + =
hy & 1%, o088 b\ 5, "?Fz v B¢,
hywr |
) 9
+ i ("g}_+l% +-1-ag) (70)
3 3 TU3 %53

where the inverse relations have been used throughout in the metrics and
the (€1, §2, §3) system. The U, v, w are then, respectively, parallel to

the o, T, T axes,

If the contravariant form for the velocity is assumed, v =r212hnvn/e\n , where
v = vn/hn and v© are the components of a contravariant vector, then the

transformation of components in R and R is related by
VP = v _agn = va - ____:n (71)
m m m h of
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~
where §n are T, o, m, respectively, forn =1, 2, 3; these forms are
essentially Eqs. (68) through (70). In the derivation of the covariant

components of Eq. (45), in general,

A8 +me| i I (14b) or (72)
) J agj — m j

where f* are the covariant components, and (, j) denotes differentiation with
respect to §j. In performing operations on ), 6 derivatives with Eq. (14b),

it may be seen that Eq. (45) results.

It remains now to express the original system in terms of the approximate
system {for numerical analysis purposes) in terms of (¢, T, 7) coordinates.
The form (Egs. 5a through 9a) is invariant in all coordinate systems

herein. From previous considerations, then, the (o, T, ™) system in ’il is

of the general form (excluding the energy equation for the present)

Y c b ~i
VJ<_3V_'+ hl_l#) +.1_g13 9P _ g (73), (74), (75)
axJ x J P ix
(pv) ;=0 (76)

where the metrics of the transformed system are known as combinations

of the metrics of the R1 original system; the velocities of the original
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éystem, written in contravariant form are then simply contravariantly

transformable into the

~N ~ ~
=2 > X
~ ’ ~ ’ ~
by b, by
~
contravariant components in RI'
Here
o~ ~11 -1/2 v ~22 -1/2 ~ ~33 -1/2
hy =g =K s BT =K, » by :K3/

In Eqgs. (73) through (77) the xj independent variables represent (¢, T, ),
respectively, for j =1, 2, 3. In that a finite difference approach has been
suggested throughout, these transformed equations in ﬁl with known
boundaries are tobesolvedin ﬁl; solutions in Rl are then obtained through
Egs. (62) through (70), and (12a). InEq. (73), p, p are taken as scalar
quantities and transform as scalars. The new form of the energy

equation will now be discussed.

In Ref. 1, f(-ryz) = PR™Y arises from the integral

____dzf = dy (77)
-7y
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On a streamline Eqs. 68 through 70 become

u -h)
2 = (78)
u stm hlgl
stm.
~ llg v&. :
B (c +g)h h(l-&)‘
2 stm. 1771 2 2 stm.
T
~ £ u
A = vl ! S+ h"g +hw§ (80)
~
h3 (C + §1)h1 2°2 3 3_ stm.
stm.

and the u, v, w components in R1 may be expressed in terms of deriva-
tives of the independent variables by Eq. (27) along a streamline. In
general, ¢ =o(§,,€,,65u, v, w,p), T = T(é‘?l, £, €35 u,v,w, p), and
T = 'rr(él, 62, &,3; u,v,w, p) and inverses were numerically determined in the
neighborhood of a point with u, v, w, p fixed as &1 = El(cr, T, mu, v, w,p),
£, = 52(0', T, mu,v,w,p), §3 = §3(o', T,mu,v,w,p) or alternatively, as

LA 2NN e VIR V3 LAV A VIR . V) [ " 2e VERE o P)
E, =8 (o, mmu,v,w,p), &, =&, (0, 1, mu, v, w,p), §,=8,(r,7, mu, v, W, p).
On a streamline, however, ratios of velocities in a particular coordinate
frame are known as ratios of derivatives, as indicated for the ¢, ¥

surfaces by Eqs. (40) through (43). Therefore, with Eqs. (28) and (29), the

two integrals representing stream surfaces arise from

I.: -dv/~ - ~-dw/m
VA, 51981 45 dga
c?+ ¢l £, %5

(81)

stm.
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I do/a -dn/w
2' g e E, dE, €,d8, dE, dt,
+ + +
R ctrgd 2 %

stm. stm.

(82)

2

where €? >C", and &,g < 1 outside of the |e |Z stagnation streamtube

approximation surface. Provided ﬁ1 , ﬁz, ﬁ3 and the remaining geometri-

cal quantities of Eqs. (78) through(80) are prescribed, then velocity ratios

on streamlines are determined. On a streamline, from Eq. (12a), or

Egs. (81) through (82),

_ const. const.

- o = (83): (84)

SR (R T

_ const.

™= (85)

(e (- )]

Next, for a particular ¢, T, 7 (starting from a location on the shock front),

it is then possible to determine relations of the form &1 = él(o-, T, ™ ,

€2 = §2(0’, T, T, €3 = §3(0',-r, 1) on streamlines in 'Ib{ Provided the tangent
streamline is next constructed over a small distance from the original
surface, new (¢, 7, W) values are obtained in such a manner that the

s
streamlines in (¢, T, m) space, R, are a priori determinable. Then in

form, locally,

pp_Y =f[Il(o','r,Tr),IZ(0',T,'rr)] (86)
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Although this procedure places heavy emphasis on numerical routines to

obtain inverses [and surfaces u/{\J.', v/";, w/%, fore, T, m, Kl’ﬁz’i’%
specified from Eqs. (83) through (85), and (78) through (80) such that
§i = ‘g'i(kr, T, mu, v, w) = Ei(o-‘, T, ma, v, w), ete. ], essentially, these are

necessary steps for the particular transformation checsen (Eq. 12).

Also, as 'fil,ﬁz,ﬁ?) = constants, in Eqs. (73) through (75), and for velocities
a,;,’\\a‘v,x{li‘j} = 0. Provided, next, the Eq. (75) is replaced by Bernoulli's
equation, then together with Eq. (86), after elimination of p,p terms,
three nonlinear coupled equations in terms of E, 3, w result, similar to
the end result of Ref. 1, These equations are then subject to numerical

methods for solution in a manncr analogous to that of Ref. 1.

-45.



V. SOME REMARKS CONCERNING NUMERICAL ANALYSIS SCHEMES
FOR IMPROPERLY SET ELLIPTIC SYSTEMS OF EQUATIONS

The system (Egs. 73 through 76) and the energy equation (Eq. 86)
have been implicitly given; the explicit form may be given either in terms
of u, v, w or 4, v, w velocity components. In terms of the latter

~ ~ ~ P .
system, and u, v, w velocities, the system is of the form

i i i ou
1 Cl2 Cis P Bl
X
ct ct ct L\ + B.. l= o (87
21 22 23 oL 22 |°
X
ct ct ct v B
31 32 . Ca33 o 33
X

where x' denotes ¢, 7, m for i= 1, 2, 3, respectively.

In that the sonic surface may be a priori determined in the R1 space,
~

the transformation intothe R, space follows. The difference scheme,

starting from the shock, is then required to satisfy conditions on the

given sonic line. In Eq.(87), the elements of the matrices are,

respectively,

o= 3[020 S @V %Zﬂ(lf{f‘l)zlw-l (88)
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p = g[céo ST &%}(%)f f (89)

where Ci’o=1+——2—2—‘, and
(v - UM _
1/y-1  ~2 1/y-1
1 _ 1 2 _ 2 A2 ~2 -1 _o,u yy-1
Cl1=% ;[C (@ + v+ )}[—Y——ZYf-“ 2 (%)
h h
1 1
X[CZ - @RE 4V Nz)}-Y/Y'l( . 1)
v -
2 Wiy - Myt 2 A2 2 A2]ey/y-l
C '-2~-—( ) ( Co - @+ + WYY
11 ¥ 2vyf vy- 1
2
3 2%y - LWL 2 A2 2 A2y y-1
cy,=- X (-~ C -(u+v+w)]VY
11 r 2V v - 1
3
cl o uwvy-1 -1, R BT
1277 K_(ny) ( -1) vy
1
1/y-1 ~2 1/y-1
2 _ 1 2 2 2, ~2 - 17 -1
C/,=—<(IC__-(u + + ][ ] - 2 — )
12 ﬁzg[ (@” 4w e AT
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11

~ l/Y'l i
3 _ _,vw(y-1 1 2 TN TN LS7ATS
Cl2 = Zg_(zvz) (Y'l)[cm-(u T +W)]
3
1/y-1 1

cl,=- 2?(%’-}) (= 1)[C§o - (@242 +\$‘2)]'Y/Y'1

b el 2 Sy

2 ~2 L A2 ~2 -y/y-l 1
X[Cm-(u +v +w):] (Y—'l->

l/y-l

- B / -1
’[c‘ S@ e +$2)]1/y-1(12'_1) (- %Yl—)(fllllxl +f1212x2)§

o) Y

1/v-1(,f‘Y/Y-1)( §
2 VWi oo+ )
y-1 I1,2 1,22

+§;;[Ci - @] (1)

1/Y'l(_f'Y/Y'l i
SRS YV TR )
y-1 )( Il 1x3 IZ 2x3
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3 3 -1/y-1
1 _u Z2u 2 ~2 A2 A2 -1 Y
Zl-ﬁ_-ﬁ_;[coo-(u +v +W)]‘<J2_—Yf )}

X(p) [e3 - @252 GA (e ) et

2y

Co1 =
h
2
3 _w
Ca17 g
3
Cyp ':,Z"Yf_l/Y-ﬂl(——Y—_ 1)[02 - (R4 38 +6v“2)]1/v-1 (% 1
hl Y @© Y
~ ~ - 'l/Y'l
flo - 6]
cl=- .fo-l/v-l(J_l)[cz - @RE VR “‘2)]‘1/Y-1(x - 1)
R, Y- 2y
X

[Cio - @+ \'x\;z)]<-y—-—l)

-l/y-l
2+t :
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22

{3

D?!H

1

X

[CZ‘O e %2)]\(”'1‘(-

[c? - @+ ¥ s;z)](xf;Tl)'

h,
X [cz - &2+
QO
o
o
~
by
i-_z_’;f-I/Y'l(
h, h,
X
w
hy

FETEY

2vyi

Y -

—l/y-l
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W - - ~ ~ ~ - - Y/Y'l
R

[a V) N ~ - -l/Y-l
X [CZ - (u.2 + vZ + WZ)](L—I)
l0'e) 2+t
_ 1 2 ,-\_,2 '»2 "\42 \{/Y-l 1 "\‘//Y'l
B33'T[Cm'(u tv +W)] ("T-—lf )(f1112+fII2 2)
h . 1 "x 2 x

-1/y-1 /x-1
r.z N2 a2 A2y -1 Y ( - 1\Y'Y
- B B S
X|_Coo‘ (W +v +w )( ¥ )] 2y )
The system Eq. (87) is then subject to finite difference solution in the
manner of Ref. 1; solutions at each point of the mesh may be trans-
formed into the physical R1 space by the inverse relations between
R, and ﬁl previously developed. The above problem is then reduced

1

to simultaneous solution of algebraic equations at points of the mesh.

To conclude, finite difference methods for problems of this nature have
been discussed in Refs. 4 and 5 for the plane case of the Laplace
equation. A discussion of Ref. 4 has been given in Ref. 1; a brief
discussion of Ref. 3 will be given here, in that methods of this type are

suggestive of methods to be used for the problem in question.
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For the Laplace equa.ti.onlzuxx + uYY =0, u(0,y) = u(myy=0,

u(x, 0) = ¢(x) , uy(x‘, 0) = Y(x) , then u(x,y) Nw/2 = k§1 akeky sin kx
+ l:iil bke"kY sin kx; in Eudov's subsequent analysis- of the Cauchy
pro—blem, the second term of the solution is dropped throughout to

simplify the results. Then providedin 0 <x<w, 0<y< Y, with

w
f uz(x, y) dx £ M2 , the norm on the initial data is taken as
0

r oo

‘ 2 2kY|1/2

Hpllg=| X aZe®¥|\V/ (90)
0 =) k

and the norm on u is taken as
T , 1/2
[lul| = sup [f u’(x, y) dx| (91)

0<y<YLJ

then | lull < |i<pi IO In terms of these norms, the effect of round-off
errors in various difference schemes are determined by assigning
approximate values to the function u(x, 0) = ¢(x) on x = x = nh, with
h=w/N, n=1, . .., N-1 and then ascertaining errors between

exact and approximate solutions on x lines for 0 < y €Y. The ''size'

lenique solutions that depend continuously on the initial data under
certain restrictions on the class of solution functions are considered
in Cudov's paper.
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of u(y) on the mesh is then taken as

1/2
[Tatn) 1y, = [h E ul(x_, y)] (92)
1

Next for u(x, 0) = ¢(x) discretized as u(x,, 0) = u(x,, 0) - &

n=1, ..., N-1, thenu(x,y) = N2/n Nz_:l ikeky sin kx, [where -ik are
k=1

determined from the ﬁ(xn, 0) boundary condition] so that the estimate

on x_ lines becomes from (Eq. 92),

- -{(N+1)(Y-v) }
| 15y) - uin) ||, sVZ M= + §oN-1)y (93)
-4N(Y-y)
l1-e
N-1 ,}1/2 o
where M is a constant and 6=|h Z 5n . Now for a system of
n=1

Cauchy-Riemann equations on the uniform rectangular net with steps
Ax = h, Ay = T = 1(h) with T(h) >0 as h - 0, a norm on the initial data

similar to (Eq. 90) is chosen

N Az zuy] /2 (94)
o] gy = kEI AZe

where the é\’k are coefficients formed from the expansion of ¢ = ¢ (nh)

in terms of the orthogonal system| N2 /7 sin k.nhl, k=1, ..., N-1.
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Now the difference scheme in T, h is stable for
[t 1, <] o] | Evst
wy) [ 1, SK|{o| | (95)
h Oh 0<h<h

If the difference scheme has solutions of the form

u(mh, n7) = u’
m

= sn(k;h) sin kmh, then the necessary condition of
stability, from (Eq. 95), is |s™(k;h)| < KeXY, (0< hr <Y), with a
strong form, ]sn(k;n)l < Keky, 0<nt<vy. If next 1/7[log s(k;h)]>k
as h -0, for 0 £k < kO’ then u converges to the exact solution in the
norm KEq.(92). Cudov then proceeds to give seven difference schemes
with conditions on 7, h such that the strong stability condition is met,
and also gives the-error of approximation for the Cauchy-Riemann
systems, i.e.,

un+1 I n n vn+1 . n

m m m+1 m-1 , m m m+1 m-1 (96)
T 2h T 2h d

error of approx. = e = O(T) + O(hz)

stable for 7/h = C = arb. const.,
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n+l _.n n ! un - 24" +un B
Ym m _ Ym+l ~ Vm-1 _ T m+l s m-1

T - 2h 2 2

h
- (97)

n+l n un - o n 2o n
Ym m _ m+l m-1 7 Ym+1 M Ym-1

T - Zh z h2

error of approx. = e = O(‘rz) + O(hz)

stable for 1/h = C = arb. const.

etc. Now for the error of approximation comparable to the round-off
error (from the stability of solutions with respect to the initial data
strong stability criteria), the step size h is:_gieterminable so that
maximum computational accuracy may be obtained. Analysis of this
type is necessary for the problem considered in (¢, T, m) space;
however, extension to nonlinear problems presents considerable
additional difficulty so that for purposes\of computation, the above
analysis serves only as a model for estirnation of certain norms such

that the computational solution is manageable.
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Fig. 1.

€ = CONST.

Coordinate System and Velocity Component System
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SHOCK &g = CONST,

m = CONST.

SURFACE

m.
f KNOWN SONIC

A (OR 77 = CONST.)

Y = CONST,
¢ = CONST,

STREAMLINE

STAGNATION LINE
APPROXIMATION

APPROXIMATION B80DY
STREAM SURFACE

TOTAL APPROXIMATION
SURFACE
Q

Transformed Coordinate System

Fig. 2.
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